Molecular Assessment of Genetic Diversity among Egyptian Landraces of Wheat (Triticum aestivum L.) Using Microsatellite Markers

Main Article Content

Ahmed Medhat Mohamed Al-Naggar
Mohamed Abd El-Maboud Abd El-Shafi
Mohamed Helmy El-Shal
Ali Hassan Anany

Abstract

To increase the genetic progress in wheat (Triticum aestivum L.) yield, breeders search for germplasm of high genetic diversity, one of them is the landraces. The present study aimed at evaluating genetic diversity of 20 Egyptian wheat landraces and two cultivars using microsatellite markers (SSRs). Ten SSR markers amplified a total of 27 alleles in the set of 22 wheat accessions, of which 23 alleles (85.2%) were polymorphic. The majority of the markers showed high polymorphism information content (PIC) values (0.67-0.94), indicating the diverse nature of the wheat accessions and/or highly informative SSR markers used in this study. The genotyping data of the SSR markers were used to assess genetic variation in the wheat accessions by dendrogram. The highest genetic distance was found between G21 (Sakha 64; an Egyptian cultivar) and the landrace accession No. 9120 (G11). These two genotypes could be used as parents in a hybridization program followed by selection in the segregating generations, to identify some transgressive segregates of higher grain yield than both parents. The clustering assigned the wheat genotypes into four groups based on SSR markers. The results showed that the studied SSR markers, provided sufficient polymorphism and reproducible fingerprinting profiles for evaluating genetic diversity of wheat landraces. The analyzed wheat landraces showed a good level of genetic diversity at the molecular level. Molecular variation evaluated in this study of wheat landraces can be useful in traditional and molecular breeding programs.

Keywords:
Landraces, molecular diversity, SSRs, PIC, UPGMA, dendrogram

Article Details

How to Cite
Al-Naggar, A. M. M., El-Shafi, M. A. E.-M. A., El-Shal, M. H., & Anany, A. H. (2020). Molecular Assessment of Genetic Diversity among Egyptian Landraces of Wheat (Triticum aestivum L.) Using Microsatellite Markers. Asian Journal of Biochemistry, Genetics and Molecular Biology, 3(4), 46-58. https://doi.org/10.9734/ajbgmb/2020/v3i430094
Section
Original Research Article

References

FAOSTAT. Food and Agriculture Organization, Statistical Division; 2020.
Available:http://www.fao.org/faostat/en/#data/QC
(Accessed on 16 February 2020)

Al-Naggar AMM, Al-Azab KF, Sobieh SES, Atta MMM. Morphological and SSR assessment of putative drought tolerant M3 and F3 families of wheat. British Biotechnology Journal. 2015;6(4):174-190.
Available:https://doi.org/10.9734/BBJ/2015/15898

Grassini P, Eskridge KM, Cassman KG. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013;4:1–11.
Available:https://doi.org/10.1038/ncomms3918

Zeven AC. Landraces: A review of definitions and classifications. Euphytica. 1998;104:127–39.
Available:https://doi.org/10.1023/A:1018683119237

Peng JH, Sun D, Nevo E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011;28:281–301.
Available:https://doi.org/10.1007/s11032-011-9608-4

Fuller DQ. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Ann. Bot. 2007;100:903–24.
Available:https://doi.org/10.1093/aob/mcm048

Cockram J, Norris C, O’Sullivan DM. PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci. 2009;49:403–10.
Available:https://doi.org/10.2135/cropsci2008.07.0398

Zaharieva M, Ayana NG, Hakimi AAl, Misra SC, Monneveux P. Cultivated emmer wheat (Triticum dicoccom Schrank), an old crop with promising future: A review. Genet Resour Crop Evol. 2010;57:937–62.
Available:https://doi.org/10.1007/s10722-010-9572-6

Uddin MS, Boerner A. Genetic diversity in hexaploid and tetraploid wheat genotypes using microsatellite markers. Plant Tissue Culture and Biotechnology. 2008;18(1):65-73.
Available:https://doi.org/10.3329/ptcb.v18i1.3267

Fufa H, Baenziger PS, Beecher BS, Dweikat I, Graybosch RA, Eskridge KM. Comparison of phenotypic and molecular marker-based classifications of hard red winter wheat cultivars. Euphytica. 2005;145:133–46.
Available:https://doi.org/10.1007/s10681-005-0626-3

Al-Ashkar I, Alderfasi A, Ben Romdhane W, Seleiman MF, El-Said Rania A, Al-Doss A. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants. 2020;9(3):287.
Available:https://doi.org/10.3390/plants9030287

Gupta PK, Varshney RK, Sharma PC, Ramech B. Molecular markers and their applications in wheat breeding. Plant Breed. 1999;118:369-390.
Available:https://doi.org/10.1046/j.1439-0523.1999.00401.x

Huang XQ, Börner A, Röder MS, Ganal MW. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theoretical and Applied Genetics. 2002;105(5):699-707.
Available:https://doi.org/10.1016/0168-9452(93)90038-2

Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P. A microsatellite map of wheat. Genetics. 1998;149:2007–23. PubMed CAS Google Scholar

Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor. Appl. Genet. 1999;99:192–8.
Available:https://doi.org/10.1007/s001220051224

Domini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ. Temporal trends in the diversity of UK wheat. Theor. Appl. Genet. 2000;100:912–917 CrossRef Google Scholar

Kamel AK, Al-Naggar AMM, Safwat G, Diab AA, Hussein MH. Molecular characterization of some Egyptian bread wheat genotypes. Arab J. Biotech. 2011;14(1):113–124.

Najaphy A, Parchin RA, Farshadfar E. Comparison of phenotypic and molecular characterizations of some important wheat cultivars and advanced breeding lines. Aust J Crop Sci. 2012;6:326–32.
Available:https://search.informit.com.au/documentSummary;dn=054770544732860;res= IELHSS

Al-Naggar AMM, Al-Azab KF, Sobieh SES, Atta MMM. Molecular analysis of new drought tolerant segregants selected from F2 populations of bread wheat crosses. World Research Journal of Agronomy. 2013;3(1):58-69.
Available:http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000009

Al-Naggar AMM, Sobieh SES, Atta MMM, Al-Azab KF. Unique SSR markers for drought tolerance in newly-developed bread wheat mutants. World Research Journal of Agronomy. 2013;2(1):015-025.
Available:https://bioinfopublication.org/files/articles/2_1_2_WRJAG.pdf

Bohn M, Utz HF, Melchinger AE. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci. 1999;39:228–37.
Available:https://doi.org/10.2135/cropsci1999.0011183X003900010035x

Sharma V, Vaishali PK, Yadav MK, Pooran C. Assessment of genetic diversity among twenty Indian wheat (Triticum aestivum L.) cultivars using simple sequence repeat (SSR) markers. Int J Curr Microbiol App Sci. 2018;7(03):1708-1717.
Available:https://doi.org/10.20546/ijcmas 703.202

Lopes MS, Dreisigacker S, Peña RJ, Sukumaran S, Reynolds MP. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor. Appl. Genet. 2015;128:453–64.
Available:https://doi.org/10.1007/s00122-014-2444-2

Gurcan K, Demirel F, Tekin M, Demirel S, Akar T. Molecular and agro-morphological characterization of ancient wheat landraces of Turkey. BMC Plant Biol. 2017;17(Suppl 1): 171.
Available:https://doi.org/10.1186/s12870-017-1133-0

Al Khateeb W, Al Shalabi A, Schroeder D, Musallam I. Phenotypic and molecular variation in drought tolerance of Jordanian durum wheat (Triticum durum Desf.) landraces. Physiol Mol Biol Plants. 2017;23:311–9.
Available:https://doi.org/10.1007/s12298-017-0434-y

Asmamaw M, Keneni G, Tesfaye K. Genetic diversity of Ethiopian durum wheat (Triticum durum Desf.) landrace collections as reveled by SSR markers. Adv Crop Sci Technol. 2019;07:1–9.
Available:https://doi.org/10.4172/2329-8863.1000413

Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. 1989 No. Ed. 2. Cold Spring Harbor Laboratory Press, USA. 1989;1546.

Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci. USA. 1979;76:5269–73.
Available:https://doi.org/10.1073/pnas.76.10.5269

Addinsoft. XLSTAT statistical and data analysis solution. Boston, USA; 2014.
Available:http://www.xlstat.com

Joshi CP, Nguyen HT. RAPD (Random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci. 1993;93:95–103.
Available:https://doi.org/10.1016/0168-9452(93)90038-2

Nagaoka T, Ogihara Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 1997;94:597–602.
Available:https://doi.org/10.1007/s001220050456

Carvalho A, Lima-Brito J, MaçÃs B, Guedes-Pinto H. Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochem. Genet. 2009;47: 276–94.
Available:https://doi.org/10.1007/s10528-009-9227-5

Blair MW, McCouch SR, Panaud O. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 1999;98:780–92. Available:https://doi.org/10.1007/s001220051135

Kantety RV, Zeng X, Bennetzen JL, Zehr BE. Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol. Breed. 1995;1:365–73.
Available:https://doi.org/10.1007/BF01248414

Steinkellner H, Lexer C, Turetschek E, Glössl J. Conservation of (GA)(n) microsatellite loci between Quercus species. Mol. Ecol. 1997;6:1189–94.
Available:https://doi.org/10.1046/j.1365-294X.1997.00288.x

Thudi M, Manthena R, Wani SP, Tatikonda L, Hoisington DA, Varshney RK. Analysis of genetic diversity in pongamia [Pongamia pinnata (L) Pierrre] using AFLP markers. J. Plant Biochem. Biotechnol. 2010;19:209–16.
Available:https://doi.org/10.1007/bf03263342

Soriano JM, Villegas D, Aranzana MJ, Garcıa del Moral LF, Royo C. Genetic structure of modern durum wheat cultivars and Mediterranean landraces matches with their agronomic performance. PLoS ONE. 2016;11(8):e0160983.
Available:https://doi.org/10.1371/journal.pone.0160983 PMID: 27513751

Zhang D, Bai G, Zhu C, Yu J, Carver BF. Genetic diversity, population structure, and linkage disequilibrium in U.S. Elite winter wheat. Plant Genome J. 2010;3:117.
Available:https://doi.org/10.3835/plantgenome2010.03.0004

Hao C, Wang L, Zhang X, You G, Dong Y, Jia J. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Sci China, Ser C Life Sci. 2006;49:218–26.
Available:https://doi.org/10.1007/s11427-006-0218-z

Chen X, Min D, Yasir TA, Hu YG. Genetic diversity, population structure and linkage disequilibrium in Elite Chinese winter wheat investigated with SSR markers. PLoS One. 2012;7:1–9.
Available:https://doi.org/10.1371/journal.pone.0044510

Rufo R, Alvaro F, Royo C, Soriano JM. From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS One. 2019;14:e0219867.
Available:https://doi.org/10.1371/journal.pone.0219867

Royo CV, Rharrabti DY, Blanco RM, Moral VG, del LF. Grain filling of durum wheat under Mediterranean conditions. Cereal Res. Commun. 1998;34:1021–8.
DOI: 10.1556/CRC.34.2006.2-3.233

Hammer K, Filatenko AA, Korzun V. Microsatellite markers - A new tool for distinguishing diploid wheat species. Genet. Resour. Crop Evol. 2000;47:497–505.
Available:https://doi.org/10.1023/A:1008761928959

Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Bohn M. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega environments. Crop Sci. 2004;44:381–8. Available:https://doi.org/10.2135/cropsci2004.3810

DeWoody JA, Honeycutt RL, Skow LC. Microsatellite markers in white-tailed deer. J. Hered. 1995;86:317–9.
Available:https://doi.org/10.1093/oxfordjournals.jhered.a111593

Al-Naggar AMM, Hussein HAA, Hussien EHA, Sabry SRS, Gad Kh IM. Genetic diversity and bulked segregant analysis for earliness in bread wheat. Arab J. of Biotech. 2010;13(2):157-172.

Al-Naggar AMM, Abd El-Salam RM, Badran AEE, El-Moghazi Mai MA. Molecular differentiation of five quinoa (Chenopodium quinoa Willd.) genotypes using Inter-Simple Sequence Repeat (ISSR) markers. Biotechnology Journal International. 2017;20(1):1-12.
DOI: 10.9734/BJI/2017/37053
Available:https://www.researchgate.net/.../320935203

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA. 1984;81:8014–8.
Available:https://doi.org/10.1073/pnas.81.24.8014

Al-Ashkar I, Alderfasi A, Ben Romdhane W, Seleiman MF, El-Said RA, Al-Doss A. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants. 2020;9(287):1-21.
DOI: 10.3390/plants9030287

Gharib MAH, Salem AH, Ali MMA, Mansour E, Qabil N. Genetic variation and interrelationships among agronomic traits in Egyptian bread wheat landraces and local cultivars. Zagazig J. Agric. Res. 2019;46(6A).

Ali Y, Khan MA, Hussain M, Atiq M, Ahmad JN. An assessment of the genetic diversity in selected wheat lines using molecular markers and PCA-based cluster analysis. Applied Ecology and Environmental Research. 2019;17(1):931-950.
Available:http://dx.doi.org/10.15666/aeer/1701_931950

Al-Naggar AMM, Abd El-Shafi MAE, El-Shal MH, Anany AH. Evaluation of Egyptian wheat landraces (Triticum aestivum L.) for drought tolerance, agronomic, grain yield and quality traits. Plant Archives. 2020;20(Supplement 1):3487-3504.

Al-Naggar AMM, Abd El-Shafi MAE, El-Shal MH, Anany AH. Selection criteria and selection environment for drought tolerance of Egyptian wheat (Triticum aestivum L.) landraces. Annual Research & Review in Biology. 2020;35(2):25-40.

Eid M. Validation of SSR molecular markers linked to drought tolerant in some wheat cultivars. J. Plant Breed. Genet. 2018;06(03):95-109.

Al-Tamimi AJT, Al-Janabi AS. Genetic diversity among bread wheat genotypes using RAPD and SSR markers. SABRAO Journal of Breeding and Genetics. 2019;51(3):325-339.