Neisseria Gonorrhoeae: Its Dominant Properties to Establish Contact and Attachment that Facilitate Epithelial Invasion and Colonization From a Biochemist Perspective
Trini Suryowati *
Department of Biochemistry, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia.
*Author to whom correspondence should be addressed.
Abstract
Aim: to discuss recent epidemiology of gonorrhoea and updates regarding its pathogenesis with a focus on biochemical aspects of contact and adhesion that preceded its epithelial invasion.
Discussion: Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases in both males and females Gonorrhea rates are rising in many countries. It could lead to long-term health problems and even infertility. Vulnerable groups including men who have sex with men and sex workers appear to bear disproportionate burdens of gonorrhea. As N. gonorrhoeae advances through the steps of disease formation and pathogenesis (transmission, adherence, colonization and invasion, and also immune evasion), the bacterium expresses some virulence factors to facilitate its survival and replication; while at the same time keeping its existence barely invasive and almost undiscoverable by active immune cells. Adherence to epithelial cells becomes the first event that precedes invasion.
Conclusion: Adhesion of gonococci to mucosal epithelial cells appears to be a critical step in the pathogenesis of gonococcal infection. Gonococci can adhere to a variety of human cells. Gonorrhea has multiple surface proteins that facilitate adhesion. N. gonorrhoeae utilize type IV pili and Opa, opacity-associated proteins, surface proteins involved in cellular attachment that preceded its invasion, Lipooligosaccharides (LOS) and also the outer membrane protein porin (POrB).
Keywords: Mucosal, microcolonies, type IV pili, conserved hydrophobic N terminus, Opa protein, lipooligosaccharide, porin
How to Cite
Downloads
References
Vicentini CB, Manfredini S, Maritati M, Di Nuzzo M, Contini C. Gonorrhea, a current disease with ancient roots: From the remedies of the past to future perspectives. Infez Med. 2019;27(2):212-221.
Sunarti LS. Microbial normal flora: Its existence and their contribution to homeostasis. Journal of Advances in Microbiology, 2022;22(9):1-15 Available:https://doi.org/10.9734/JAMB/2022/v22i930483
Song W, Yu Q, Wang L-C, Stein DC. Adaptation of Neisseria gonorrhoeae to the Female Reproductive Tract. Microbiology Insights. 2020;13. Available:https://doi.org/10.1177/1178636120947077
Płaczkiewicz J. Avoidance of mechanisms of innate immune response by neisseria gonorrhoeae. Postępy Mikrobiologii - Advancements of Microbiology. 2019; 58:367-73. Available:https://doi.org/10.21307/PM-2019.58.4.367.
Wang LC, Yu Q, Edwards V, Lin B, Qiu J, Turner JR, Stein DC, Song W. Neisseria gonorrhoeae infects the human endocervix by activating non-muscle myosin II-mediated epithelial exfoliation. PLoS Pathog. 2017;13(4):e1006269. Available:https://doi.org/10.1371/journal.ppat.1006269.
Yu Q, Wang LC, Di Benigno S, Stein DC, Song W. Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin. PLoS Pathog. 2021; 17(12):e1009592. DOI:https://doi.org/10.1371/journal.ppat.1009592
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, et al. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol. 2023;13:1124591. Available:https://doi.org/10.3389/fcimb.2023.1124591
Takei M, Yamaguchi Y, Fukuda H, Yasuda M, Deguchi T. Cultivation of Neisseria gonorrhoeae in liquid media and determination of its in vitro susceptibilities to quinolones. J Clin Microbiol. 2005; 43(9):4321-7 Available:https://doi.org/10.1128/JCM.43.9.4321-4327.2005
Smith H, Yates EA, Cole JA, Parsons NJ. Lactate stimulation of gonococcal metabolism in media containing glucose: mechanism, impact on pathogenicity, and wider implications for other pathogens. Infect Immun. 2001;69(11):6565-72. DOI:https://doi.org/10.1128/IAI.69.11.6565-6572.2001
Atack JM, Ibranovic I, Ong CL, Djoko KY, Chen NH, Vanden Hoven R, Jennings MP, Edwards JL, McEwan AG. A role for lactate dehydrogenases in the survival of Neisseria gonorrhoeae in human polymorphonuclear leukocytes and cervical epithelial cells. J Infect Dis. 2014; 210(8):1311-8. Available:https://doi.org/10.1093/infdis/jiu230
Exley RM, Wu H, Shaw J, Schneider MC, Smith H, Jerse AE, Tang CM. Lactate acquisition promotes successful colonization of the murine genital tract by Neisseria gonorrhoeae. Infect Immun. 2007;75(3):1318-24. Available:https://doi.org/10.1128/IAI.01530-06
Gao L, Parsons NJ, Curry A, Cole JA, Smith H. Lactate causes changes in gonococci including increased lipopolysaccharide synthesis during short-term incubation in media containing glucose. FEMS Microbiol Lett. 1998; 169(2):309-16. DOI: https://doi.org/10.1111/j.1574-6968.1998.tb13334.x
Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith H, Tang CM. Available carbon source influences the resistance of Neisseria meningitidis against complement. J Exp Med. 2005;201(10):1637-45 Available:https://doi.org/10.1084/jem.20041548
Ayala JC, Shafer WM. Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease). PLoS Pathog. 2019;15(12):e1008233. Available:https://doi.org/10.1371/journal.ppat.1008233.
Ratter JM, Rooijackers HMM, Hooiveld GJ, Hijmans AGM, de Galan BE, Tack CJ, et al. In vitro and in vivo Effects of Lactate on Metabolism and Cytokine Production of Human Primary PBMCs and Monocytes. Front Immunol. 2018;9:2564. Available:https://doi.org/10.3389/fimmu.2018.02564
Quillin S, Seifert H. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol. 2018;16:226–40. Available:https://doi.org/10.1038/nrmicro.2017.169
World Health Organization. Gonorrhoea (Neisseria gonorrhoeae infection); 2023. Available:https://www.who.int/news-room/fact-sheets/detail/gonorrhoea-(neisseria-gonorrhoeae-infection)
Budkaew J, Chumworathayi B, Pientong C, Ekalaksananan T. Prevalence and factors associated with gonorrhea infection with respect to anatomic distributions among men who have sex with men. PLoS One. 2019 Apr 3;14(4):e0211682. DOI: https://doi.org/10.1371/journal.pone.0211682
Whelan J, Abbing-Karahagopian V, Serino L, Unemo M. Gonorrhoea: A systematic review of prevalence reporting globally. BMC Infect Dis. 2021;21(1):1152. Available:https://doi.org/10.1186/s12879-021-06381-4
Van Gerwen OT, Jani A, Long DM, Austin EL, Musgrove K, Muzny CA. Prevalence of sexually transmitted infections and human immunodeficiency virus in transgender persons: A systematic review. Transgend Health. 2020;5(2):90-103. Available:https://doi.org/10.1089/trgh.2019.0053
Chemaitelly H, Majed A, Abu-Hijleh F, Blondeel K, Matsaseng TC, Kiarie J, et al. Global epidemiology of Neisseria gonorrhoeae in infertile populations: Systematic review, meta-analysis and metaregression. Sex Transm Infect. 2021; 97(2):157-169. Available:https://doi.org/10.1136/sextrans-2020-054515.
Tsevat DG, Wiesenfeld HC, Parks C, Peipert JF. Sexually transmitted diseases and infertility. Am J Obstet Gynecol. 2017; 216(1):1-9. Available:https://doi.org/10.1016/j.ajog.2016.08.008
Ngampasutadol J, Tran C, Gulati S, Blom AM, Jerse EA, Ram S, Rice PA. Species-specificity of Neisseria gonorrhoeae infection: do human complement regulators contribute? Vaccine. 2008;26 Suppl 8:I62-6 Available:https://doi.org/10.1016/j.vaccine.2008.11.051
Farage MA, Maibach HI. Morphology and physiological changes of genital skin and mucosa. Curr Probl Dermatol. 2011;40:9-19. Available:https://doi.org/10.1159/000321042
Springer C, Salen P. Gonorrhea. [Updated 2023 Apr 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available:https://www.ncbi.nlm.nih.gov/books/NBK558903/
Martín-Sánchez M, Fairley CK, Ong JJ, Maddaford K, Chen MY, Williamson DA, et al. Clinical presentation of asymptomatic and symptomatic women who tested positive for genital gonorrhoea at a sexual health service in Melbourne, Australia. Epidemiol Infect. 2020;148:e240. DOI: https://doi.org/10.1017/S0950268820002265
Darville T. Pelvic Inflammatory Disease Due to Neisseria gonorrhoeae and Chlamydia trachomatis: Immune Evasion Mechanisms and Pathogenic Disease Pathways. J Infect Dis. 2021;224(12 Suppl 2):S39-S46. DOI: https://doi.org/10.1093/infdis/jiab031
Reekie J, Donovan B, Guy R, Hocking JS, Kaldor JM, Mak D, Preen D, Ward J, Liu B. Chlamydia and reproductive health outcome investigators. Risk of Ectopic Pregnancy and Tubal Infertility Following Gonorrhea and Chlamydia Infections. Clin Infect Dis. 2019;69(9):1621-3. Available:https://doi.org/10.1093/cid/ciz145
Teker B, de Vries H, Heijman T, van Dam A, van der Loeff MS, Jongen VW. Spontaneous clearance of asymptomatic anogenital and pharyngeal Neisseria gonorrhoeae: A secondary analysis from the NABOGO trial. Sexually Transmitted Infections. 2023;99:219-25. Available:https://doi.org/10.1136/sextrans-2022-055488
Liang C, Zhao Z, Liu S, Zhang T, Zuo W. Single-cell transcriptome profiling of the vaginal epithelium reveals the heterogeneity of suprabasal cells. Precis Clin Med. 2023;6(1):pbad006. Available:https://doi.org/10.1093/pcmedi/pbad006
Anderson DJ, Marathe J, Pudney J. The structure of the human vaginal stratum corneum and its role in immune defense. Am J Reprod Immunol. 2014;71(6):618-23. DOI: https://doi.org/10.1111/aji.12230
Mendes AC, Ciccone M, Gazolla B, Bahia D. Epithelial haven and autophagy breakout in gonococci infection. Front Cell Dev Biol. 2020;8:439. DOI: https://doi.org/10.3389/fcell.2020.00439.
Taktikos J, Lin YT, Stark H, Biais N, Zaburdaev V. Pili-induced clustering of N. gonorrhoeae Bacteria. PLoS One. 2015;10(9): e0137661. Available:https://doi.org/10.1371/journal.pone.0137661.
Sunarti LS. Gonorrhoeae must compete with the naturally inhabitant of microbial community right at the outer mucosal surface to authorize infection. [Preprint]; 2023. Available:https://www.researchgate.net/publication/374695474_Gonorrhoeae_Must_Compete_With_The_Naturally_Inhabitant_of_Microbial_Community_Right_At_The_Outer_Mucosal_Surface_To_Authorize_Infection
Pönisch W, Weber CA, Juckeland G, Biais N, Zaburdaev V. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates. New J Phys. 2017; 19(1):015003. Available:https://doi.org/10.1088/1367-2630/aa5483
Kouzel N, Oldewurtel ER, Maier B. Gene transfer efficiency in gonococcal biofilms: Role of biofilm age, architecture, and pilin antigenic variation. J Bacteriol. 2015; 197(14):2422-31 Available:https://doi.org/10.1128/JB.00171-15
Kurzyp K, Harrison OB. Bacterium of one thousand and one variants: genetic diversity of Neisseria gonorrhoeae pathogenicity. Microb Genom. 2023;9(6):mgen001040. Available:https://doi.org/10.1099/mgen.0.001040.
Stevens JS, Criss AK. Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Curr Opin Hematol. 2018;25(1):13-21. Available:https://doi.org/10.1097/MOH.0000000000000394
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The cervicovaginal mucus barrier. Int J Mol Sci. 2020;21(21):8266. Available:https://doi.org/10.3390/ijms21218266.
Shukair SA, Allen SA, Cianci GC, Stieh DJ, Anderson MR, Baig SM, Gioia CJ, Spongberg EJ, Kauffman SM, McRaven MD, Lakougna HY, Hammond C, Kiser PF, Hope TJ. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. Mucosal Immunol. 2013;6(2):427-34. Available:https://doi.org/10.1038/mi.2012.87
Jennings LK, Krywko DM. Pelvic Inflammatory Disease. [Updated 2023 Mar 13]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. Available:https://www.ncbi.nlm.nih.gov/books/NBK499959/
Prendiville W, Sankaranarayanan R. Colposcopy and treatment of cervical precancer. Lyon (FR): International Agency for Research on Cancer; 2017. (IARC Technical Report, No. 45.) Chapter 2., Anatomy of the uterine cervix and the transformation zone. Available:https://www.ncbi.nlm.nih.gov/books/NBK568392/
Dash S, Sethy PK, Behera SK. Cervical Transformation Zone Segmentation and classification based on improved inception-resnet-V2 using colposcopy images. Cancer Inform. 2023;22: 11769351231161477. Available:https://doi.org/10.1177/11769351231161477
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol. 2023;14:1119834. Available:https://doi.org/10.3389/fmicb.2023.1119834
Zhu W, Cardenas-Alvarez MX, Tomberg J, Little MB, Duncan JA, Nicholas RA. Commensal Neisseria species share immune suppressive mechanisms with Neisseria gonorrhoeae. PLoS One. 2023;18(4):e0284062. Available:https://doi.org/10.1371/journal.pone.0284062
Peric A, Weiss J, Vulliemoz N, Baud D, Stojanov M. Bacterial colonization of the female upper genital tract. Int J Mol Sci. 2019;20(14):3405. Available:https://doi.org/10.3390/ijms20143405
Younes JA, Klappe K, Kok JW, Busscher HJ, Reid G, van der Mei HC. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion. Cell Microbiol. 2016;18(4):605-14.Available:https://doi.org/10.1111/cmi.12537
Ferrari M, Cirisano F, Morán MC. Mammalian cell behavior on hydrophobic substrates: influence of surface properties. Colloids and Interfaces. 2019;3(2):48. Available:https://doi.org/10.3390/colloids3020048
Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn Dent Sci Rev. 2021;57:85-96. Available:https://doi.org/10.1016/j.jdsr.2021.05.003
Busscher H, Norde W, Sharma P, van der Mei H. Interfacial re-arrangement in initial microbial adhesion to surfaces. Current Opinion in Colloid & Interface Science. 2010;15:510–7 Available:https://doi.org/10.1016/j.cocis.2010.05.014
Bukrinsky MI, Mukhamedova N, Sviridov D. Lipid rafts and pathogens: The art of deception and exploitation. J Lipid Res. 2020;61(5):601-10. Available:https://doi.org/10.1194/jlr.TR119000391.
Giardina PC, Williams R, Lubaroff D, Apicella MA. Neisseria gonorrhoeae induces focal polymerization of actin in primary human urethral epithelium. Infect Immun. 1998;66(7):3416-9. Available:https://doi.org/10.1128/IAI.66.7.3416-3419.1998
Karuppiah V, Collins R, Thistlethwaite A, Gao Y, Derrick J. Structure and assembly of an inner membrane platform for initiation of type IV pilus biogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2013. Available:https://doi.org/110.10.1073/pnas.1312313110
Hu LI, Stohl EA, Seifert HS. The Neisseria gonorrhoeae type IV pilus promotes resistance to hydrogen peroxide- and LL-37-mediated killing by modulating the availability of intracellular, labile iron. PLoS Pathog. 2022;18(6):e1010561. Available:https://doi.org/10.1371/journal.ppat.1010561
Garnett JA, Atherton J. Structure determination of microtubules and pili: Past, present, and future directions. Front Mol Biosci. 2022;8:830304. Available:https://doi.org/10.3389/fmolb.2021.830304
Hu LI, Yin S, Ozer EA, Sewell L, Rehman S, Garnett JA, Seifert HS. Discovery of a New Neisseria gonorrhoeae Type IV Pilus Assembly Factor, TfpC. mBio. 2020;11(5):e02528-20. Available:https://doi.org/10.1128/mBio.02528-20
Ball LM, Criss AK. Constitutively Opa-expressing and Opa-deficient neisseria gonorrhoeae strains differentially stimulate and survive exposure to human neutrophils. J Bacteriol. 2013;195(13): 2982-90. Available:https://doi.org/10.1128/JB.00171-13
Alcott AM, Werner LM, Baiocco CM, Belcher Dufrisne M, Columbus L, Criss AK. Variable expression of opa proteins by neisseria gonorrhoeae influences bacterial association and phagocytic killing by human neutrophils. J Bacteriol. 2022; 204(4):e0003522. Available:https://doi.org/10.1128/jb.00035-22
Winther-Larsen HC, Hegge FT, Wolfgang M, Hayes SF, van Putten JP, Koomey M. Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence. Proc Natl Acad Sci U S A.;98(26):15276-81. Available:https://doi.org/10.1073/pnas.261574998
Kolappan S, Coureuil M, Yu X, Nassif X, Egelman EH, Craig L. Structure of the Neisseria meningitidis Type IV pilus. Nat Commun. 2016;7:13015. Available:https://doi.org/10.1038/ncomms13015
Kupsch EM, Knepper B, Kuroki T, Heuer I, Meyer TF. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 1993;12(2):641-50. Available:https://doi.org/10.1002/j.1460-2075.1993.tb05697.x
Hung MC, Christodoulides M. The biology of Neisseria adhesins. Biology (Basel). 2013;2(3):1054-109. Available:https://doi.org/10.3390/biology2031054
Song W, Ma L, Chen R, Stein DC. Role of lipooligosaccharide in Opa-independent invasion of Neisseria gonorrhoeae into human epithelial cells. J Exp Med. 2000;191(6):949-60 Available:https://doi.org/10.1084/jem.191.6.949
van Vliet SJ, Steeghs L, Bruijns SC, Vaezirad MM, Snijders Blok C, Arenas Busto JA, Deken M, van Putten JP, van Kooyk Y. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog. 2009;5(10):e1000625. Available:https://doi.org/10.1371/journal.ppat.1000625
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis. 2017;75(4):ftx049.
Available:https://doi.org/10.1093/femspd/ftx049
Duncan JA, Brown LB, Leone PA. CHAPTER 25 - Gonococcal and Other Neisserial Infections in Guerrant RL, Walker DH, Weller PF. Tropical Infectious Diseases: Principles, Pathogens and Practice (Third Edition), W.B. Saunders. 2011;184-190. Available:https://doi.org/10.1016/B978-0-7020-3935-5.00025-2
Chen A, Seifert HS. Structure-function studies of the Neisseria gonorrhoeae major outer membrane porin. Infect Immun. 2013;81(12):4383-91. Available:https://doi.org/10.1128/IAI.00367-13
Zeth K, Kozjak-Pavlovic V, Faulstich M, Fraunholz M, Hurwitz R, Kepp O, Rudel T. Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae. Biochem J. 2013;449(3):631-42. Erratum in: Biochem J. 2013;454(2):359. Available:https://doi.org/10.1042/BJ20121025.
Allan-Blitz LT, Adamson PC, Klausner JD. Resistance-guided therapy for Neisseria gonorrhoeae. Clinical Infectious Diseases. 2022;75(9):1655-60.
Kakooza F, Kiggundu R, Mboowa G, Kateete PD, Nsangi OT, Kabahita JM, Ssentalo Bagaya B, Golparian D, Unemo M. Antimicrobial susceptibility surveillance and antimicrobial resistance in Neisseria gonorrhoeae in Africa from 2001 to 2020: A mini-review. Frontiers in Microbiology. 2023;14:1148817.