Molecular Characterization of Carbapenemase Encoding Genes in Pseudomonas aeruginosa from Tertiary Healthcare in South Eastern Nigeria

Rebecca Chinenye Ogba

Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, P.M.B. 53, Nigeria and Department of General Studies, Science and Technology, Federal Polytechnic, Ohodo, P.M.B. 01801, Enugu, Nigeria.

Onyinye Lovette Nomeh

Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, P.M.B. 53, Nigeria.

Christiana Inuaesiet Edemekong

Department of Biotechnology, Faculty of Pure and Applied Science, Federal College of Dental Technology and Therapy, Trans-Ekulu, P.M.B. 01473, Enugu, Nigeria.

Agabus Chidiebube Nwuzo

Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, P.M.B. 53, Nigeria.

Peace Oluchi Akpu

Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, P.M.B. 53, Nigeria.

Ikemesit Udeme Peter *

Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, P.M.B. 53, Nigeria and Department of Public Health, Faculty of Health Technology and Engineering, Federal College of Dental Technology and Therapy, Trans-Ekulu, P.M.B. 01473, Enugu, Nigeria.

Ifeanyichukwu Romanus Iroha

Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, P.M.B. 53, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Background and Objectives: In recent years, the rate of carbapenemase encoding gene in P. aeruginosa has increased worldwide and has become of great concern since it’s significantly restricts the therapeutic options for patients in Tertiary health care. Therefore, there’s a need for molecular characterization of carbapenemase encoding genes in Pseudomonas aeruginosa from Tertiary Healthcare in South Eastern Nigeria.

Methodology: A total of twelve (12) Pseudomonas aeruginosa positive culture of Urine (n=5), Wound swab (n=5), Catheter tip (n=2) were collected from Alex Ekwueme Federal University Hospital Teaching Hospital, Abakaliki (AE-FUTHA), Ebonyi State, South eastern Nigeria.  The Pseudomonas aeruginosa strain confirmation was performed using VITEK 2 System and the bacteria were further screen for carbapemase encoding gene by PCR specific primer.

Results: Molecular amplification of carbapenemase encoding genes revealed that blaNDM and blaIPM accounted 12 (100%) across all sample source. Among the various sample sources, blaKPC was found 1(8.3%) in Urine, wound swab 3(25.0%), and Catheter tip 1(8.3%), while blaVIM was found 2(16.7%), 2(16.7%) and 0(0.0%) in Urine, wound swab and Catheter tip respectively. Co-expression of blaNDM + blaIMP accounted 5(41.6 %), 5(41.6 %) and 2(16.7 %) in Urine, wound swab and Catheter tip respectively. Co-expression of blaKPC + blaNDM + blaVIM + blaIMP + blaOXA was only detected in urine 1(8.3 %).

Conclusion: The current study gives an account of the presence of carbapenemase-encoding genes in P. aeruginosa. The expression of carbapenemase-encoding genes may be the mainstay of phenotypic MDR. As a result, physicians, other medical professionals, researchers, and public health policymakers must be kept up to date on the spread of carbapenemase-encoding genes. In addition, strict infection prevention and control strategies, as well as antimicrobial stewardship programs, are highly desirable in admission healthcare facilities where carbapenemase-encoding genes are spreading.

Keywords: Carbapenemase-encoding, gene, Pseudomonas aeruginosa


How to Cite

Ogba, R. C., Nomeh, O. L., Edemekong, C. I., Nwuzo, A. C., Akpu, P. O., Peter, I. U., & Iroha, I. R. (2022). Molecular Characterization of Carbapenemase Encoding Genes in Pseudomonas aeruginosa from Tertiary Healthcare in South Eastern Nigeria. Asian Journal of Biochemistry, Genetics and Molecular Biology, 12(4), 161–168. https://doi.org/10.9734/ajbgmb/2022/v12i4281

Downloads

Download data is not yet available.

References

Qu J, Cai Z, Liu Y, Duan X, Han S, Liu J, Zhu Y, Jiang Z, Zhang Y, Zhuo C. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Front Cell Infect Microbiol. 2021;11:641920.

Loyola-Cruz MÁ, Durán-Manuel EM, Cruz-Cruz C, Marquez-Valdelamar LM, Bravata-Alcantara, JC, Cortés-Ortíz IA, Cureño-Díaz MA, Ibáñez-Cervantes G, Fernández-Sánchez V, Castro-Escarpulli G. ESKAPE bacteria characterization reveals the presence of Acinetobacter baumannii and Pseudomonas aeruginosa outbreaks in COVID-19/VAP patients. Am J Infect Cont. 2022;20:22-67.

Rajat RM, Ninama GL, Mistry K, Parmar R, Patel K, Vegad MM. Antibiotic resistance pattern in Pseudomonas aeruginosa species isolated at a tertiary care hospital, Ahmadabad. National J Med Res. 2012;2(11):156-9.

Willyard C. The drug resistant bacteria that pose the greatest health threats. Nature. 2017;543:15-78.

Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant enterobacteriaceae: An update on therapeutic options. Front Microbiol. 2019;10:80-89.

Jean SS, Ko WC, Lu MC, Lee WS, Hsueh PR. Multicenter surveillance of In Vitro activities of cefepime-zidebactam, cefepime-enmetazobactam, omadacycline, eravacycline, and comparator antibiotics against enterobacterales, Pseudomonas aeruginosa, and Acinetobacter Baumannii complex causing bloodstream infection in Taiwan 2020. Exp Rev Anti Infect Ther. 2022;1:13-45.

Tenover FC, Nicolau DP, Gill CM. Carbapenemase producing Pseudomonas aeruginosa –an emerging challenge. Emerg Microbes Infect. 2022;11:1811-814.

Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC, Muleta D. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerg Infect Dis. 2019;25:1281–1288.

Poirel L, Nordmann P, Lagrutta E, Cleary T, Munoz-Price LS. Emergence of KPC-producing Pseudomonas aeruginosa in the United States. J Antimicrob Agent Chemother. 2010;54:3072.

Kindu M, Derseh L, Gelaw B, Moges F. Carbapenemase-producing non-glucose-fermenting gram-negative bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: A systematic review and meta-analysis. Int J Microbiol. 2020;94:61-901.

Yoon EJ, Jeong SH. Mobile carbapenemase genes in Pseudomonas aeruginosa. Front Microbiol. 2021;12:614-058.

Davoudi-Monfared E, Khalili H. The threat of carbapenem- resistant gram-negative bacteria in a Middle East Region. Infect Drug Resist. 2018;11:1831–1880.

Neidhöfer C, Buechler C, Neidhöfer G, Bierbaum G, Hannet I, Hoerauf A. Global distribution patterns of carbapenemase-encoding bacteria in a new light: Clues on a role for ethnicity. Front Cell Infect Microbiol. 2021;11:659-753.

Edemekong CI, Iroha IR, Thompson MD, Okolo IO, Uzoeto HO, Ngwu JN, Mohammed ID, Chukwu EB, Nwuzo AC, Okike BM, Okolie SO, Peter IU. Phenotypic characterization and antibiogram of non-oral bacteria isolates from patients attending dental clinic at Federal College of Dental Technology and Therapy Medical Center Enugu. Int J Pathog Res.2022;11(2):7-19.

Peter IU, Ngwu JN, Edemekong CI, Ugwueke IV, Uzoeto HO, Joseph OV, Mohammed ID, Mbong EO, Nomeh OL, Ikusika BA, Ubom IJ, Inyogu JC, Ntekpe ME, Obodoechi IF, Nse Abasi PL, Ogbonna IP, Didiugwu CM, Akpu PO, Alagba EE, Ogba RC, Iroha IR. First report prevalence of Livestock Acquired Methicillin Resistant Staphylococcus aureus (LA-MRSA) strain in South Eastern, Nigeria. IOSR J Nurs Health Sci. 2022;11(1):50-56.

Peter IU, Emelda NC, Chukwu EB, Ngwu JN, Uzoeto HO, Moneth EC Stella AO, Edemekong CI, Uzoamaka EP, Nwuzo AC, Iroha IR. Molecular detection of bone sialoprotein-binding protein (bbp) genes among clinical isolates of methicillin resistant Staphylococcus aureus from hospitalized orthopedic wound patients. Asian J Orthopaedic Res. 2022;8(3): 1-9.

Edemekong CI, Uzoeto HO, Mbong EO, Ikusika BA, Didiugwu, CM, Ngwu JN, NseAbasi PL, Ntekpe ME, Mohammed ID, John-Onwe BN, Alagba EE, Obodoechi IF, Joseph OV, Ogbonna IP, Ubom IJ, Peter IU. Molecular characterization and bioassay of soil Actinomycetes strains on multidrug resistant bacteria. IOSR J Biotechnol Biochem. 2022;(1):6-11.

Aruhomukama D, Najjuka CF, Kajumbula H, Okee M, Mboowa G, Sserwadda I. BlaVIM- and blaOXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago Hospital Intensive Care Unit in Kampala, Uganda. BMC Infect Dis. 2019;19:853.

Verma N, Prahraj AK, Mishra B, Behera B, Gupta K. Detection of carbapenemase-producing Pseudomonas aeruginosa by phenotypic and genotypic methods in a tertiary care hospital of East India. J Lab Physiol. 2019;11:287–291.

Ellappan K, Belgode NH, Kumar S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J Glob Antimicrob Resist. 2018;12:37–43.

Al Dawodeyah HY, Obeidat N, Abu-Qatouseh LF, Shehabi AA. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs, 2018;8(1):31–40.

Walsh TR. Clinically significant carbapenemases: An update. Current Opin Infect Dis. 2008;21(4):367–371.

Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in Northern Iran: A potential threat to clinical therapeutics. Ci ji yi xue za zhi and Tzu-chi Med J. 2018;30(2):90–96.

Senda K, Arakawa Y, Ichiyama S, Nakashima K, Ito H, Ohsuka S. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol. 1996a;34:2909–2913.

Senda K, Arakawa Y, Nakashima K, Ito H, Ichiyama S, Shimokata K. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. J Antimicrob Agent Chemother. 1996b;40:349– 353.

Kao CY, Chen SS, Hung KH, Wu HM, Hsueh PR, Yan JJ. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated From patients with bloodstream infections in Taiwan. BMC Microbiol. 2016;16:107-456.

Bush K, Jacoby GA. Updated functional classification of beta-lactamases. J Antimicrob Agent Chemother. 2010;54(3):969–76.

Kunz Coyne AJ, Amer E, Dana H, Nicholas R, Michael JR. Therapeutic strategies for emerging multidrug- resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022;11:661–682.

Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J. 2003;22:2959–2969.

Roy-Chowdhury P, Scott MJ, Djordjevic SP. Genomic Islands 1 and 2 carry multiple antibiotic resistance genes in Pseudomonas aeruginosa ST235, ST253, ST111 and ST175 and are globally dispersed. J Antimicrob Agent Chemother. 2017;72:620–622.

Yoon EJ, Kim D, Lee H, Lee HS, Shin JH, Park YS. Mortality dynamics of Pseudomonas aeruginosa bloodstream infections and the influence of defective OprD on mortality: Prospective observational study. J Antimicrob Agent Chemother. 2019;74:2774–2783.

Moran-Barrio J, Lisa MN, Larrieux N, Drusin SI, Viale AM, Moreno DM. Crystal structure of the metallo-beta-lactamase Gob in the periplasmic dizinc form reveals an unusual metal site. J Antimicrob Agent Chemother. 2016;60:6013–6022.